
1

alexander.pletzer@noaa.gov,
WWW home page: http://ncvtk.sf.net/



Ncvtk: A program for visualizing planetary data

Alexander Pletzer1,4, Remik Ziemlinski2,4, and Jared Cohen3,4

1 RS Information Systems
2 Raytheon

3 The College of New Jersey
4 Geophysical Fluid Dynamics Laboratory, Princeton NJ 08542, USA

Abstract. Ncvtk is a visualization tool offering a high degree of inter-
activity to scientists who need to explore scalar and vector data on a
longitude-latitude based grid. Ncvtk was born out of four recent trends:
open source programming, the availability of a high quality visualization
toolkit, the emergence of scripting, and the wide availability of fast and
inexpensive hardware.

1 Why Ncvtk?

In geophysical sciences as in many other areas, the volume of data generated
by simulation codes has steadily increased over time. Present climate modeling
codes can generate tens of Gigabytes (Gbyte) of data for a single run. Plowing
through such amounts of data requires visualization tools that go well beyond
simple plotting utilities. The challenge then is to provide a simple visualization
tool that can be used by non-experts.

We have developed Ncvtk [1] to offer climate scientists a means to explore
data interactively and intuitively. Ncvtk was designed from the ground up to be
straightforward to use. No prior programming or other experience is required.
We believe users should be no more than a few mouse clicks away from seeing
their data. Moreover, in contrast to a number of proprietary programs, Ncvtk is
compiled from source and thus can accommodate rapid advances in software li-
braries, compiler, and hardware. This distinguishes Ncvtk from most commercial
visualization tools.

Ncvtk focuses on planetary science data, which lie on a spherical domain and
are elevation- and/or time-dependent. Typically, the maximum elevation/depth
is three orders of magnitudes smaller than the horizontal length scale. For most
purposes, the data are heavily stratified in elevation. Therefore, it is convenient
to regard the data as lying flat on the surface of a sphere with the most interesting
phenomena taking place on the longitude-latitude plane.

2 Building blocks

We have chosen to build Ncvtk by using the Visualization Toolkit (VTK) [2]
as our foundation. VTK is a powerful object oriented, 3D visualization library,



3

which is open-source and is being actively developed. VTK is known to run on
many Unix flavors (Linux x86, ia64, Mac OS X) and Windows. Contrary to other
visualization packages, VTK does not provide a visual programming interface
or a custom scripting language. Instead, VTK is written in C++ while offering
bindings to the Java, Tcl and Python programming languages.

We settled our choice on Python, an object oriented scripting language that
offers a vast collection of modules (graphical user interface, regular expression
engine, calendar arithmetic, etc.). Such capability is not readily available, out-
of-the-box in C/C++. Numerically demanding tasks are carried out using the
Python Numeric module [3], whose performance we found to be on par with com-
piled code. By some fortuitous coincidence, it was realized that VTK methods
expecting a raw pointer array can also take a Python Numeric array. This allows
communication between Python and C++ without the need for data copying.

The climate simulation codes of our users comply to the Flexible Model-
ing System (FMS) [4] guidelines, which require data to be written in the self-
described NetCDF file format. Attributes of fields such as name, physical units,
axes dependency, etc. are stored within the file. Ncvtk assumes that the simula-
tion codes loosely follow the CDC conventions [5] for describing valid data range,
missing values, whether the data are packed or not, and whether the grid is rec-
tilinear or warped. NetCDF data may consist of floats, doubles or shorts (when
packed). Ncvtk will automatically cast the data to working precision (float or
double) without the need for user intervention.

3 Example

Some of Ncvtk’s capabilities are now illustrated. Figure 1 was obtained from a
run performed by the non-hydrostatic, atmospheric code ZETAC, which solves
the compressible fluid equations for velocity and pressure using a terrain follow-
ing vertical coordinate. This makes ZETAC ideal for studying cyclogenesis in
the vicinity of mountain ridges [6].

A color pipeline reading a color map from an external file was used to repre-
sent the topology and a piecewise linear opacity function was applied to indicate
the presence of clouds. The last layer consists of labeled temperature contours
and colored pressure contours, all at surface level. The horizontal wind velocity
field at surface level is shown as white arrow glyphs. The opacity of the glyphs
increases with wind magnitude. To emphasize the hour of the day, an external
light simulating the sun was added.

Each visual pipeline (color plot, opacity, contour, vector, etc.) comes with
its own graphical user interface containing a field selector, an elevation slider
and specific widgets for user interactivity. Any number of pipelines can be in-
stantiated. A pipeline can be removed simply by destroying the graphical user
interface window.

In this onion skin approach, an arbitrary number of fields can be displayed
simultaneously, layered on top of each other. Field values may also be probed
by moving the mouse over regions of interest. Since only two-dimensional fields



4

Fig. 1. Non-hydrostatic atmospheric simulation obtained using the ZETAC code.

need to be stored at any given time and elevation, the memory footprint remains
modest even in the case of Gbyte-sized data sets. This feature allows Ncvtk to
run on personal computers with typically less than 1 Gbyte of memory.

Note that most of the heavy number crunching involves computing structured
grid coordinates and evaluating minimum/maximum data ranges across space
and time. Recall that the data of a single field can amount to Gbytes. To preserve
responsiveness in Ncvtk, the data range calculation is performed by subsampling
in time and elevation.

4 Summary

Ncvtk was released in October 2004 and an executable version has since been
made available to users at the Geophysical Fluid Dynamics Laboratory. Before
Ncvtk, the tool of choice was Ncview [7], a program using color texture to rep-
resent scalar fields on a plane. Ncview is straightforward to use and provided
our initial inspiration. Like Ncvtk, Ncview reads data from a NetCDF file and
is targeted at planetary sciences. Ncview’s main advantage over Ncvtk is that
it is lightweight and fast. We have attempted to emulate Ncview’s ease of use
while adding many more features including support for multiple fields, multiple
staggered grids, warped coordinates, opacity and contour plot, and vector fields.



5

A workshop on Ncvtk has recently been organized [8] attracting about 30 par-
ticipants. This provided constructive feedback to Ncvtk’s developers. It appears
that scientists especially value accuracy, robustness and ease-of-use.

By implementing Ncvtk in Python, we were able to leverage on a vast body of
existing Python modules and so cover significant ground in a few months of de-
velopment time. Few application specific programming languages that ship with
many commercial visualization packages can claim to offer comparable scope to
that of a generic programming language. Among the many Python features that
played a prominent role in Ncvtk one can cite lists and hash tables to represent
object collections, module unit tests to allow classes to be tested in isolation, and
on demand, event-driven programming. Thanks to Python’s dynamic nature, a
scripting programming interface that maps the GUI functionality on a one-to-
one basis could be written with little extra effort. In retrospect, Python’s biggest
strength may have been, however, the error handling that comes built into the
language. Python failures do not lead to segmentation violation or other forms
of hard crashes, conferring to Ncvtk a high degree of robustness. We believe that
many projects could benefit from the shift from compiled code to scripting.

Ncvtk’s design emphasizes scalability in performance and functionality. So
far we have only scratched the surface of VTK’ capability; there remains ample
room to add more functionality to Ncvtk. Extensions that are presently being
considered include vertical slices of scalar fields, texture based visualization of
vector fields, the ability to read files from several NetCDF files simultaneously,
support for several scene renderers, a mechanism for adding user extensions
(add-ons), and the ability to plot vertical profiles. The challenge will be to allow
Ncvtk to evolve while remaining simple to use, robust and predictable.

Acknowledgments

We would like to thank Drs C. L. Kerr and S. T. Garner for providing the
impetus for this work and for providing initial test data. Ncvtk is graciously
hosted by SourceForge [9], which includes a CVS repository, a bug tracking tool,
a feature request tool, and mailing lists. Ncvtk would not exist without the freely
available VTK library [2].

References

1. http://ncvtk.sourceforge.net
2. http://public.kitware.com/VTK/
3. http://www.pfdubois.com/numpy/
4. http://www.gfdl.noaa.gov/∼fms/
5. http://www.cdc.noaa.gov/cdc/conventions/cdc netcdf standard.shtml
6. Orlanski, I., Gross, B. D.: Orographic modification of cyclode development. J. At-

mos. Sci., 51, 589–611.
7. http://meteora.ucsd.edu/∼pierce/ncview home page.html
8. http://ncvtk.sourceforge.net/ncvtk tutorial.pdf
9. http://sourceforge.net


